|
|
(6 intermediate revisions by 4 users not shown) |
Line 1: |
Line 1: |
− | {{DSS description, Name, responsible organisation and contact person | + | {{DSS, Wiki quality control |
− | |Name=Sistema de Apoio à Decisão em Planeamento Operacional Florestal
| + | |Has flag=N/A |
− | |Acronym=SADPOF
| + | |
− | |Type of the owner organization=research institution
| + | |
− | |Institutional framework=research prototype (R&D project)
| + | |
− | |Contact person for the Wiki=Alexandra Marques
| + | |
− | |Contact e-mail for the Wiki=alexmarques@isa.utl.pt
| + | |
− | |Contact person for the DSS=Alexandra Marques
| + | |
− | |Contact e-mail for the DSS=alexmarques@isa.utl.pt | + | |
| }} | | }} |
− | {{DSS description, Scope of the tool | + | {{DSS, Name, responsible organisation and contact person |
− | |Description=Web based application for optimized forest operational planning (FOP). Currently solves harvest scheduling integrated with eucalyptus (Eucalyptus globulus, Labill) wood logs and biomass assortment and assignment, under the scope of an integrated pulp and paper company.
| + | |Has name=Sistema de Apoio à Decisão em Planeamento Operacional Florestal |
− | |Modelling dimension=Forest indicators | + | |Has acronym=SADPOF |
− | |Temporal scale=medium term (tactical) | + | |Has wiki contact person=Alexandra Marques |
− | |Spatial context=spatial with no neighbourhood interrelations | + | |Has wiki contact e-mail=asfmarques78@gmail.com |
− | |Spatial scale=regional/national level, forest level | + | |
− | |Objectives dimension=multiple objectives
| + | |
− | |Goods and services dimension=market non-wood products, market wood products
| + | |
− | |Forest management goal=forest fuel harvesting
| + | |
− | |Supported tree species=Eucalyptus globulus
| + | |
− | |Supported silvicultural regime=uneven-aged/plantation
| + | |
− | |Decision making dimension=single decision maker
| + | |
− | |Participatory planning tasks supported=exploring options, evaluating options
| + | |
| }} | | }} |
− | {{DSS description, Concrete application | + | {{DSS, Software identification |
− | |Typical use case=harvest scheduling, wood supply plan | + | |Has software=SADPOF.Software identification |
− | |User profile=Non-industrial private owners
| + | |
− | |Country=Portugal
| + | |
− | |Number of users=0
| + | |
− | |Number of real-life applications=0
| + | |
− | |Utilisation in education: kind of utilisation (demo, use)=presentation/demo
| + | |
− | |Tool dissemination=Videos, scientific articles, communications on research and tecnhical events
| + | |
| }} | | }} |
− | {{DSS description, Installation and support | + | {{DSS, Description |
− | |Status=used (under upgrade) | + | |Has description=Web based application for optimized forest operational planning (FOP). Currently solves harvest scheduling integrated with eucalyptus (Eucalyptus globulus, Labill) wood logs and biomass assortment and assignment, under the scope of an integrated pulp and paper company. |
− | |Accessibility=restricted access | + | |Has modelling scope=Forest indicators |
− | |Commercial product=No | + | |Has temporal scale=Medium term (tactical), Short term (operational) |
− | |Deployment cost=N/A | + | |Has spatial context=Spatial with no neighbourhood interrelations |
− | |Installation requirements=Client requirements: Browser with web connectivity Minimum Windows XP (GIS module) Server requirements: Windows Server 2003 SQL Server 2005 .Net 3.5 1 GB memory minimum Duo Core Processor | + | |Has spatial scale=Forest level, Regional/national level |
− | |Computational limitations=N/A | + | |Has objectives dimension=Multiple objectives |
− | |User support organization=Link/ISA | + | |Has goods and services dimension=Market non-wood products, Market wood products |
− | |Support team size=1 | + | |Has forest management goal=forest fuel harvesting |
− | |Maintenance organization=Link/ISA | + | |supports tree species=Eucalyptus globulus |
− | |Price= | + | |supports silvicultural regime=uneven-aged/plantation |
| + | |Has decision making dimension=Single decision maker |
| }} | | }} |
− | {{DSS description, Data, data model and data management | + | {{DSS, Concrete application |
− | |Input data requirements=Forest inventory data, Logistic data | + | |Has typical use case=harvest scheduling, wood supply plan |
− | |Format of the input data=database | + | |Has user profile=Non-industrial private owners |
− | |Data validation=missing/wrong data | + | |Has country=Portugal |
− | |Format of the output data=table, map, pre-defined report | + | |Has number of users=0 |
− | |Internal data management=database | + | |Has number of real-life applications=0 |
− | |Database=MySQL | + | |Has utilisation in education=presentation/demo |
− | |GIS integration=other
| + | |Has tool dissemination=Videos, scientific articles, communications on research and tecnhical events |
− | |Data mining=N/A
| + | |
− | |Spatial analysis=basic GIS functionalities, possibility to easily export in ArcGIS | + | |
| }} | | }} |
− | {{DSS description, Models and methods, MBMS, decision support techniques | + | {{DSS, Decision support techniques used in the DSS |
− | |Forest models=yield models | + | |Has decision support techniques=SADPOF.Decision support techniques used in the DSS |
− | |Ecological models=N/A
| + | |
− | |Social models=N/A
| + | |
− | |MCDM methods=N/A
| + | |
− | |Optimisation package=CPLEX, LP SOLVE
| + | |
− | |Optimisation algorithm=linear programming, mixed integer programming, metaheuristic algorithm
| + | |
− | |Risk evaluation=N/A, user defined
| + | |
− | |Uncertainty evaluation=N/A
| + | |
− | |Planning scenario=The user can create simultaneously several what-if scenarios. They are easily accessed on the DSS. Their results can exported and easily compared.
| + | |
| }} | | }} |
− | {{DSS description, Support of knowledge management process | + | {{DSS, Support of Knowledge Management |
− | |Supported KM processes=N/A
| + | |Has knowledge management processes=SADPOF.Support of Knowledge Management |
− | |Integrated KM techniques to identify and structure knowledge=
| + | |
− | |Integrated KM techniques to analyse and apply knowledge=
| + | |
| }} | | }} |
− | {{DSS description, Support of social participation | + | {{DSS, Support of social participation |
− | |Participatory planning tasks supported=exploring options, evaluating options | + | |Has support for social participation=SADPOF.Support of social participation |
− | |Stakeholder identification support=
| + | |
− | |Planning criteria formation support=
| + | |
− | |Planning process monitoring and evaluation=
| + | |
− | |Planning outcome monitoring and evaluation=
| + | |
| }} | | }} |
− | {{DSS description, User interface and outputs | + | {{DSS, DSS development |
− | |User access control=Yes | + | |Has DSS development=SADPOF.DSS development |
− | |Parameterised GUI=Yes
| + | |
− | |Map interface=2D
| + | |
− | |GUI technology=.NET
| + | |
| }} | | }} |
− | {{DSS description, System design and development | + | {{DSS, Documentation |
− | |Software development methodology=Enterprise Architecture for DSS design; UML Use Cases for specification | + | |Has website=http://www.link.pt/upl/%7B0757b300-68df-4497-b85a-b4bb3926396a%7D.pdf |
− | |Development start year=2008
| + | |Has reference=Marques AF, Borges JG, Sousa P, Gonçalves L, Diaz E, Moura P, Ferrinho M. 2011. Integrating harvest scheduling and timber assortment and assignment planning processes. An application to forest tactical planning by a pulpwood company in Portugal. Forest Science (prep); Marques AF, Borges JG, Sousa P, Fonseca M, Garcia R, Batista G. 2010. Applying enterprise architecture to the design of the integrated forest products supply chain management system. In: Varajão, Cunha M. (Eds.) Proceedings of the CENTERIS2010 Conference, Part II, CCIS 110, Springer-Verlag Berlin Heidelberg 2010, pp. 32-40. |
− | |Number of development years (100% equivalent)=1.5
| + | |
− | |Development team size=7 | + | |
− | |Team profiles=Project manager, 1 senior +2 junior IT developers +2 forestry and OR experts + 3 stakeholders
| + | |
− | |Number of forest specialists in the development team=4
| + | |
− | |Number of users participating in specification=3
| + | |
− | |Stakeholder identification support=
| + | |
− | |Planning criteria formation support=
| + | |
| }} | | }} |
− | {{DSS description, Technological architecture, integration with other systems
| |
− | |System type=client-server (web)
| |
− | |Application architecture=1. GUI interface layer; creating and reading scenarios; accessing the scenarios execution queue, parameterizing the model and the solution method; 2. simulator and optimizer (with access to CPLEX or Simulated Annealing with LP solve or case-specific heuristic); 3: data layer (data base for case study, parameters and scenario results)
| |
− | |Communication architecture=web connectivity
| |
− | |Operating system=Windows
| |
− | |Programming language=C#
| |
− | |Scalability=Yes
| |
− | |Integration with other systems=web services can be implemented easily
| |
− | |Related tools=SADfLOR
| |
− | }}
| |
− | {{DSS description, Ongoing development
| |
− | |Adaptation effort (man years)=parametrised by the supplier
| |
− | }}
| |
− | {{DSS description, Documentation
| |
− | |Website=http://www.link.pt/upl/%7B0757b300-68df-4497-b85a-b4bb3926396a%7D.pdf
| |
− | |Manual=Yes
| |
− | |Technical documentation=Yes
| |
− | |References=Marques AF, Borges JG, Sousa P, Gonçalves L, Diaz E, Moura P, Ferrinho M. 2011. Integrating harvest scheduling and timber assortment and assignment planning processes. An application to forest tactical planning by a pulpwood company in Portugal. Forest Science (prep); Marques AF, Borges JG, Sousa P, Fonseca M, Garcia R, Batista G. 2010. Applying enterprise architecture to the design of the integrated forest products supply chain management system. In: Varajão, Cunha M. (Eds.) Proceedings of the CENTERIS2010 Conference, Part II, CCIS 110, Springer-Verlag Berlin Heidelberg 2010, pp. 32-40.
| |
− | }}
| |
− | [[Image:printscreen_home.jpg|thumb|400px|SADPOF]]
| |
− | = ADDITIONAL INFORMATION (needs to be migrated using the "edit with form" link) =
| |
− | === Scope of the system ===
| |
− | SADPOF allows forest practitioners to simulate alternative FOP scenarios and computer economical and ecological scenario evaluation indicators for further scenario comparison. The results of the selected management scenario can be visualized into a GIS integrated module or presented in several pre-defined reports, like the Operational Plan.
| |
− |
| |
− | === System origin ===
| |
− | The SADPOF prototype has developed in 2007-2008 in the course of Portuguese funding research project, coordinated by the IT Company Link Consulting [http://www.link.pt], with the scientific partnership of Instituto Superior de Agronomia (ISA) [http://www.isa.utl.pt] and the forest business experts from Grupo Portucel Soporcel [http://www.portucelsoporcel.com/pt/]. The latter were involved during the entire project and provided real-life requirements and test cases, which motivated the models and optimization algorithms developed by ISA. This prototype was publically presented to the Iberian Forest community during the FOP workshop organized by the partnership.
| |
− |
| |
− | It is still a work in progress as its current version implements a sub-set of the foreseen SADPOF functionalities. Further developments can include its productization and installation into real-life application cases.
| |
− |
| |
− | === Support for specific issues ===
| |
− | SADDPOF aims to provide optimized FOP scenarios and facilitate subsequent trade-off analysis. Its current scenarios establish monthly harvest schedules for different wood product assortments as well as its distribution networks from harvest sites to transformation centers, including terminals for intermediate storing. The harvest scheduling sub-problem accounts for spatial constraints, monthly forest roads accessibility and contractual obligations forcing harvest to occur before land rental contract expiration. The distribution sub-problem fulfills the monthly qualified destinations demands and relays on other specific transportation-distribution constraints, like road and railway transportation costs minimization, terminals maximum storing capacity and maximum storing time.
| |
− |
| |
− | Furthermore, its novel technical architecture foresees specific decision support features, such as user’s scenario parameterization screens, scenario cloning for creating new scenarios based on existents, scenarios queue for accessing its processing status and automatically triggers simulation and optimization events. The GIS visualization and reporting templates meet the users’ real-life requirements.
| |
− | [[Image:Diagram_sadpof.jpg|thumb|400px|SADPOF forest tactical/operational planning problems]]
| |
− |
| |
− | === Support for specific thematic areas of a problem type ===
| |
− | * Silvicultural
| |
− | *Product Assortment
| |
− | * Assignment and distribution
| |
− | * Development choices / land use zoning
| |
− | Further developments will implement transportation planning and crews scheduling.
| |
− |
| |
− | === Capability to support decision making phases ===
| |
− | * ''Intelligence:'' SADPOF provides a structure approach to FOP problems as it identifies required information, allows the selection and parameterization of the management goals and constraints. It contributes for capturing existing technical knowledge and generates new decision support basis information through optimized scenarios economical and ecological assessments and trade-offs analysis.
| |
− | * ''Design:'' SADPOF simulates and assesses alternative FOP scenarios related within the goals and constraints selected by users.
| |
− | * ''Choice:'' SADPOF provide optimized solution for each FOP scenario, driving the decision-maker to choose among the best solutions.
| |
− | * ''Monitor:'' SADPOF is restricted to planning purposes. However its integration with operations follow-up system is foreseen, with special interest for adaptive real-time planning features.
| |
− |
| |
− | === Related systems ===
| |
− | SADPOF yearly harvesting stands sub-set results from with other strategic forest planning systems, such as [[SAGfLOR]]. The scenario characterization information can be resident in other related systems, like the forestland patrimony management system. Currently, SADPOF data canalization relays on pre-defined import formats, although integration interfaces can be developed. Similarly, the pre-defined outputs can feed other systems downstream of the planning process, such as forest services adjudication and operations follow-up systems.
| |
− |
| |
− | == Data and data models ==
| |
− | [[Image:printscreen_ParamModelo.jpg|thumb|400px|SADPOF model parameter GUI]]
| |
− |
| |
− | === Typical spatial and temporal extent of application ===
| |
− | SADPOF it’s a tactical/operational planning systems, encompassing 12 to 36 1-month temporal horizon. It typically deals with forest regional scale problems, although the wood destination network can be national or international.
| |
− |
| |
− | === Forest data input ===
| |
− | SADPOF required forest level input data.
| |
− | * Forest harvesting stand: geographical location, area, forest occupation, harvesting volume estimates at the initial planning period, wood piles geographical location, road accessibility months, contractual obligations, slope level, site index
| |
− | * Product assortment: type of product, product characteristics
| |
− | * Transformation center: geographical location, accepted products
| |
− | * Terminal: geographical location, accepted products
| |
− | * Distribution network: geographical representation, shortest path transportation distances by road and railway between each origin and destination
| |
− |
| |
− | === Type of information input from user (via GUI) ===
| |
− | Describe what is the information that the user directly inputs in the system if any): expert knowledge, opinion, goals and production objectives, preferences, stand/site information....
| |
− | The user can change pre-defined parameter values in specific GUI:
| |
− | * Management model parameters:
| |
− | **Eucaliptus silvicultural system: maximum rotation, minimum harvesting age, installation density
| |
− | **Annual average growth in each site index
| |
− | **Economical information: harvesting unitary costs, installation unitary costs (with or without resprout removal) wood product prices per destination, transportation unitary costs, storing costs,
| |
− | **Minimum qualified monthly demands on the destinations
| |
− | **Terminals maximum storing capacity and maximum storing time
| |
− | **Spatial constraints: minimum operational area, maximum operational area, minimum distance between adjacent stands, exclusion period
| |
− | **Minimum monthly level of stripped and un-stripped wood
| |
− | **Time horizon, interest rate
| |
− | * parameters: Maximum number of iterations, Cooling parameters
| |
− |
| |
− | == Models ==
| |
− | === Forest models ===
| |
− | *Eucaliptus wood logs volume and weight growth and yield models
| |
− | *Eucaliptus biomass prediction models
| |
− | *Eucaliptus wood logs drying models
| |
− |
| |
− | == Decision Support ==
| |
− | === Decision-making processes and models ===
| |
− | *Operations research modeling
| |
− | **Simulated annealing and HAFS heuristics<ref> 5. Marques AF, Borges JG, Sousa P, Gonçalves L, Diaz E, Moura P, Ferrinho M. 2011. Integrating harvest scheduling and timber assortment and assignment planning processes. An application to forest tactical planning by a pulpwood company in Portugal. Forest Science (prep). </ref>
| |
− | **Simulated annealing and transportation algorithm at LP Solve [[http://lpsolve.sourceforge.net/5.5/]] <ref>http://lpsolve.sourceforge.net/5.5/ </ref>
| |
− | **Model exportation in CPLEX [[http://ftp.ilog.fr/products/cplex/product/mip.cfm]] <ref>http://ftp.ilog.fr/products/cplex/product/mip.cfm </ref> template for optimal solution
| |
− |
| |
− | === General system functioning ===
| |
− | The user starts by creating a new FOP scenario or consulting the scenarios processing status in the Scenarios queue. The FOP scenario includes selecting one model and solution method, their parameters configuration, all the required business data and afterwards, the optimization results. Thus, the users operations in the SADPOF are:
| |
− |
| |
− | *''New FOP scenario creation:'' selection of the model and solution method
| |
− | *''Scenario parameterization:'' the model and solution methods have default values, with can be changed by the user.
| |
− | *''Scenario simulation:'' automatic system operation for decision variable generation and business data canalization. The simulated scenario can be optimized within SAPDOF optimization module or exported to CPLEX.
| |
− | *''Scenario optimization:'' automatic system operation for solution method execution. Ends with the generation on the Operational Plan and the other SADPOF outputs.
| |
− | *''Scenario cloning:'' corresponds to the exact replication of a selected scenario (model, solution method, business data, parameters) on the created or simulated status. This feature enables rapid new scenario creation for further parameterization, aiming scenarios comparison.
| |
− | *''Scenario analysis:'' the scenario optimization results can support profitability assessments and trade-off analysis.
| |
− | *''Scenario queue consultation:'' presents the status of each FOP scenario and their direct link. Several scenarios can be created almost simultaneously. Their processing sequence is automatically managed by the Scenario queue.
| |
− | *''Operational plan consultation''
| |
− |
| |
− | == Output ==
| |
− | [[Image:printscreen_PlanoCortes.jpg|thumb|400px|SADPOF Operational Plan: Harvesting and wood logs/biomass distribution plans]]
| |
− | [[Image:printscreen_SIG.jpg|thumb|400px|SADPOF SIG module: Distribution network for 4m wood logs in a specific period]]
| |
− | === Types of outputs ===
| |
− | The results of the selected management scenario can be visualized into a GIS integrated module or presented in several pre-defined reports, like the '''Operational Plan'''. This excel report presents monthly harvest schedules and monthly qualified wood flows between the origins and destinations, in order to maximize the forest operations net present value (NPV) and to fulfill the management objectives and constraints. It further expresses the scenario optimization results summary which can be used to perform scenario '''profitability analysis''' (e.g., individual NPV contributions of harvest transportation from stands and transportation from terminals into the final NPV result, limiting and non-limiting constraints, obtained vs. target deviations for the limiting constraints, weights and penalties given to each unitary deviation). Additionally, '''trade off analysis''' can be performed, through generating identical scenarios, changing some model parameters and conducting their optimized results comparison (e.g. impact of terminal capacities increment, existence/value of transformation centers self-supply levels, existence/level of terminals minimum level of supply, increasing the penalty of the maximum area limitation constraint, existence/value of the terminals maximum storing time, wood product prices variation in some destinations, operations costs variations, inaccessibility of the forest roads for some stands during winter).
| |
− |
| |
− | === Spatial analysis capabilities ===
| |
− | * integrated capabilities in the SADPOF GIS module
| |
− | * facilitates links to other GIS systems
| |
− |
| |
− | == System ==
| |
− | === System requirements ===
| |
− | * Client requirements:
| |
− | **Browser with web connectivity
| |
− | **Minimum Windows XP (GIS module)
| |
− | * Server requirements:
| |
− | **Windows Server 2003
| |
− | **SQL Server 2005
| |
− | **.Net 3.5
| |
− | **1 GB memory
| |
− | ** minimum Duo Core Processor
| |
− |
| |
− | === Architecture and major DSS components ===
| |
− | [[Image:diagrama_arq.jpg|thumb|400px|SADPOF modular components]]
| |
− | The forest practitioners were involved during the entire project, particularly at SADPOF architecture and specification, using the Enterprise Architecture approach <ref>Marques AF, Borges JG, Sousa P and Pinho A, 2010. An enterprise architecture approach to forest management support systems design. An application to pulpwood supply management in Portugal. European Journal of Forest Research130 (6): 935-948</ref> <ref>Marques AF, Borges JG, Sousa P, Fonseca M, Garcia R, Batista G. 2010. Applying enterprise architecture to the design of the integrated forest products supply chain management system. In: Varajão, Cunha M. (Eds.) Proceedings of the CENTERIS2010 Conference, Part II, CCIS 110, Springer-Verlag Berlin Heidelberg 2010, pp. 32-40.</ref>
| |
− |
| |
− | The SADPOF three layer modular architecture encompasses the common business information and scenario data repositories, the GUI interfaces for the several FOP application modules and their specific simulator and optimizer component.
| |
− | Visual Studio 2008 (C#) is the SADPOF developing environment, except for the GIS module implemented in Open Source MapWinGis [[http://www.mapwindow.org]] <ref> http://www.mapwindow.org </ref>
| |
− |
| |
− | === Usage ===
| |
− | Currently it has research use.
| |
− |
| |
− | === Installation ===
| |
− | * It requires prior user training on the SADPOF concepts.
| |
− | * Demo: trial and demo versions can be given by request [[alexmarques@isa.utl.pt]].
| |
− |
| |
− | =References=
| |
− | ==Cited references==
| |
− | <references/>
| |