Difference between revisions of "SADPOF"

From COST Action FP0804: FORSYS
Jump to: navigation, search
m (1 revision: Import from testwiki)
 
(12 intermediate revisions by 4 users not shown)
Line 1: Line 1:
== General System description ==
+
{{DSS, Wiki quality control
[[Image:printscreen_home.jpg|thumb|400px|SADPOF]]
+
|Has flag=N/A
 
+
System name: Sistema de Apoio à Decisão em Planeamento Operacional Florestal
+
 
+
Acronym: SADPOF
+
 
+
=== Brief overview ===
+
Web based application for optimized forest operational planning (FOP). Currently solves harvest scheduling integrated with eucalyptus ([[:Category:Eucalyptus globulus |Eucalyptus globulus, Labill]]) wood logs and biomass assortment and assignment, under the scope of an integrated pulp and paper company.
+
[[Category:Finished articles]]
+
[[Category:2008]]
+
[[Category:Decision support system]]
+
[[Category:Landscape quality]]
+
[[Category:Portuguese DSS]]
+
[[Category:Forest level]]
+
[[Category:Tactical-Operational planning]]
+
[[Category:Simulated annealing]]
+
[[Category:.NET]]
+
[[Category:WEB]]
+
__TOC__
+
== COST FORSYS Properties ==
+
{{DSS description, Identification
+
|Acronym=SADPOF
+
|Name=Sistema de Apoio à Decisão em Planeamento Operacional Florestal
+
|Contact person=Alexandra Marques
+
|Contact email=alexmarques@isa.utl.pt
+
|Type of the owner organization=research institution
+
|Website=http://www.link.pt/upl/%7B0757b300-68df-4497-b85a-b4bb3926396a%7D.pdf
+
|Description=Web based application for optimized forest operational planning (FOP). Currently solves harvest scheduling integrated with eucalyptus (Eucalyptus globulus, Labill) wood logs and biomass assortment and assignment, under the scope of an integrated pulp and paper company.
+
|References=Marques AF, Borges JG, Sousa P, Gonçalves L, Diaz E, Moura P, Ferrinho M. 2011. Integrating harvest scheduling and timber assortment and assignment planning processes. An application to forest tactical planning by a pulpwood company in Portugal. Forest Science (prep); Marques AF, Borges JG, Sousa P, Fonseca M, Garcia R, Batista G. 2010. Applying enterprise architecture to the design of the integrated forest products supply chain management system. In: Varajão, Cunha M. (Eds.) Proceedings of the CENTERIS2010 Conference, Part II, CCIS 110, Springer-Verlag Berlin Heidelberg 2010, pp. 32-40.
+
|Development start year=2008
+
|Institutional framework=research prototype (R&D project)
+
|size=User access control= Team profiles= Software development methods=
+
|participating in specification=
+
 
}}
 
}}
{{DSS description, FORSYS problem types classification
+
{{DSS, Name, responsible organisation and contact person
|Temporal scale=medium term (tactical)
+
|Has name=Sistema de Apoio à Decisão em Planeamento Operacional Florestal
|Spatial context=spatial with neighbourhood interrelations
+
|Has acronym=SADPOF
|Spatial scale=regional/national level, forest level
+
|Has wiki contact person=Alexandra Marques
|Decision making dimension=single decision maker
+
|Has wiki contact e-mail=asfmarques78@gmail.com
|Objectives dimension=multiple objectives
+
|Goods and services dimension=market non-wood products, market wood products
+
|size=User access control= Team profiles= Software development methods=
+
|participating in specification=
+
 
}}
 
}}
{{DSS description, Utilisation scope
+
{{DSS, Software identification
|Status=used (under upgrade)
+
|Has software=SADPOF.Software identification
|User profile=Non-industrial private owners, other.
+
|Initial deployment effort=<= 1 week
+
|Adaptation effort=parametrised by the supplier
+
|Maintenance organization=Link/ISA
+
|User support organization=Link/ISA
+
|Support team size=1
+
|Number of real-life applications=0
+
|Last utilisation year by users=2008
+
|Typical use case=harvest scheduling, wood supply plan
+
|Number of users=0
+
|Utilisation in education=presentation/demo
+
|Manual=Yes
+
|Accessibility=restricted access
+
|Deployment cost=<= 10‘000€
+
|Installation requirements=Client requirements: Browser with web connectivity Minimum Windows XP (GIS module) Server requirements: Windows Server 2003 SQL Server 2005 .Net 3.5 1 GB memory minimum Duo Core Processor
+
|Country=Portugal
+
|Last utilised in education=2011
+
|size=User access control= Team profiles= Software development methods=
+
|participating in specification=
+
 
}}
 
}}
{{DSS description, Functional description
+
{{DSS, Description
|Species=Eucalyptus globulus
+
|Has description=Web based application for optimized forest operational planning (FOP). Currently solves harvest scheduling integrated with eucalyptus (Eucalyptus globulus, Labill) wood logs and biomass assortment and assignment, under the scope of an integrated pulp and paper company.
|Silvicultural regime=uneven-aged/plantation
+
|Has modelling scope=Forest indicators
|Forest management goal=forest fuel harvesting
+
|Has temporal scale=Medium term (tactical), Short term (operational)
|Risk evaluation=N/A, user defined
+
|Has spatial context=Spatial with no neighbourhood interrelations
|Input data requirements=Forest inventory data, Logistic data
+
|Has spatial scale=Forest level, Regional/national level
|Modelling dimension=Forest indicators, Scenario, creation and comparison, What-if analysis
+
|Has objectives dimension=Multiple objectives
|Planning scenario=The user can create simultaneously several what-if scenarios. They are easily accessed on the DSS. Their results can exported and easily compared.
+
|Has goods and services dimension=Market non-wood products, Market wood products
|Parameterised GUI=Yes
+
|Has forest management goal=forest fuel harvesting
|size=User access control= Team profiles= Software development methods=
+
|supports tree species=Eucalyptus globulus
|participating in specification=
+
|supports silvicultural regime=uneven-aged/plantation
 +
|Has decision making dimension=Single decision maker
 
}}
 
}}
{{DSS description, Models and techniques to support decision making
+
{{DSS, Concrete application
|Optimisation algorithm=linear programming, mixed integer programming, metaheuristic algorithm
+
|Has typical use case=harvest scheduling, wood supply plan
|MCDM methods=N/A
+
|Has user profile=Non-industrial private owners
|Knowlegde management methods=database
+
|Has country=Portugal
|Forest models=yield models
+
|Has number of users=0
|Ecological models=N/A
+
|Has number of real-life applications=0
|Social models=N/A
+
|Has utilisation in education=presentation/demo
|Data mining=N/A
+
|Has tool dissemination=Videos, scientific articles, communications on research and tecnhical events
|Uncertainty evaluation=N/A
+
|2D map interface=Yes
+
|3D map interface=No
+
|size=User access control= Team profiles= Software development methods=
+
|participating in specification=
+
 
}}
 
}}
{{DSS description, Support for knowledge management processes
+
{{DSS, Decision support techniques used in the DSS
|Tool dissemination=Videos, scientific articles, communications on research and tecnhical events
+
|Has decision support techniques=SADPOF.Decision support techniques used in the DSS
|Supported KM processes=N/A
+
|size=User access control= Team profiles= Software development methods=
+
|participating in specification=
+
 
}}
 
}}
{{DSS description, Support for participatory planning
+
{{DSS, Support of Knowledge Management
|Participatory planning tasks supported=exploring options, evaluating options
+
|Has knowledge management processes=SADPOF.Support of Knowledge Management
|size=User access control= Team profiles= Software development methods=
+
|participating in specification=
+
 
}}
 
}}
{{DSS description, Development process
+
{{DSS, Support of social participation
|Number of forest specialists in the development team=4
+
|Has support for social participation=SADPOF.Support of social participation
|Development team size=7
+
|User access control=no
+
|Team profiles=Project manager, 1 senior +2 junior IT developers +2 forestry and OR experts + 3 stakeholders
+
|Software development methods=Enterprise Architecture for DSS design; UML Use Cases for specification
+
|User-friendliness of GUI=web based, simple,
+
|Number of developer months=18
+
|Development cost=>10‘000€
+
|Percentage of HR cost=90
+
|Technical documentation=Yes
+
|Number of users on participating in specification=3
+
|size=User access control= Team profiles= Software development methods=
+
|participating in specification=
+
 
}}
 
}}
{{DSS description, IT environment & IT requirements
+
{{DSS, DSS development
|Operating system=Windows
+
|Has DSS development=SADPOF.DSS development
|Programming language=C#
+
|System type=client-server (web)
+
|Communication architecture=web connectivity
+
|Database=MySQL
+
|GIS integration=other
+
|Optimisation package=CPLEX, LP_SOLVE
+
|Application architecture=1. GUI interface layer; creating and reading scenarios; accessing the scenarios execution queue, parameterizing the model and the solution method; 2. simulator and optimizer (with access to CPLEX or Simulated Annealing with LP solve or case-specific heuristic); 3: data layer (data base for case study, parameters and scenario results)
+
|Format of the input data=database
+
|Format of the output data=table, GUI, pre-defined report, maps
+
|Internal data management=database
+
|Data validation=missing/wrong data
+
|GUI technology=.NET
+
|Scalability=Yes
+
|Spatial analysis=basic GIS functionalities, possibility to easily export in ArcGIS
+
|Related tools=SADfLOR
+
|Integration with other systems=web services can be implemented easily
+
|Computational limitations=N/A
+
|size=User access control= Team profiles= Software development methods=
+
|participating in specification=
+
 
}}
 
}}
{{DSS description, Commercial information
+
{{DSS, Documentation
|Can be used commercially=No
+
|Has website=http://www.link.pt/upl/%7B0757b300-68df-4497-b85a-b4bb3926396a%7D.pdf
|size=User access control= Team profiles= Software development methods=
+
|Has reference=Marques AF, Borges JG, Sousa P, Gonçalves L, Diaz E, Moura P, Ferrinho M. 2011. Integrating harvest scheduling and timber assortment and assignment planning processes. An application to forest tactical planning by a pulpwood company in Portugal. Forest Science (prep); Marques AF, Borges JG, Sousa P, Fonseca M, Garcia R, Batista G. 2010. Applying enterprise architecture to the design of the integrated forest products supply chain management system. In: Varajão, Cunha M. (Eds.) Proceedings of the CENTERIS2010 Conference, Part II, CCIS 110, Springer-Verlag Berlin Heidelberg 2010, pp. 32-40.
|participating in specification=
+
 
}}
 
}}
=== Scope of the system ===
 
SADPOF allows forest practitioners to simulate alternative FOP scenarios and computer economical and ecological scenario evaluation indicators for further scenario comparison. The results of the selected management scenario can be visualized into a GIS integrated module or presented in several pre-defined reports, like the Operational Plan.
 
 
=== System origin ===
 
The SADPOF prototype has developed in 2007-2008 in the course of Portuguese funding research project, coordinated by the IT Company Link Consulting [http://www.link.pt], with the scientific partnership of Instituto Superior de Agronomia (ISA) [http://www.isa.utl.pt] and the forest business experts from Grupo Portucel Soporcel [http://www.portucelsoporcel.com/pt/]. The latter were involved during the entire project and provided real-life requirements and test cases, which motivated the models and optimization algorithms developed by ISA. This prototype was publically presented to the Iberian Forest community during the FOP workshop organized by the partnership.
 
 
It is still a work in progress as its current version implements a sub-set of the foreseen SADPOF functionalities. Further developments can include its productization and installation into real-life application cases.
 
 
=== Support for specific issues  ===
 
SADDPOF aims to provide optimized FOP scenarios and facilitate subsequent trade-off analysis. Its current scenarios establish monthly harvest schedules for different wood product assortments as well as its distribution networks from harvest sites to transformation centers, including terminals for intermediate storing. The harvest scheduling sub-problem accounts for spatial constraints, monthly forest roads accessibility and contractual obligations forcing harvest to occur before land rental contract expiration. The distribution sub-problem fulfills the monthly qualified destinations demands and relays on other specific transportation-distribution constraints, like road and railway transportation costs minimization, terminals maximum storing capacity and maximum storing time.
 
 
Furthermore, its novel technical architecture foresees specific decision support features, such as user’s scenario parameterization screens, scenario cloning for creating new scenarios based on existents, scenarios queue for accessing its processing status and automatically triggers simulation and optimization events. The GIS visualization and reporting templates meet the users’ real-life requirements.
 
[[Image:Diagram_sadpof.jpg|thumb|400px|SADPOF forest tactical/operational planning problems]]
 
 
=== Support for specific thematic areas of a problem type  ===
 
* Silvicultural
 
*Product Assortment
 
* Assignment and distribution
 
* Development choices / land use zoning
 
Further developments will implement transportation planning and crews scheduling.
 
 
=== Capability to support decision making phases  ===
 
* ''Intelligence:'' SADPOF provides a structure approach to FOP problems as it identifies required information, allows the selection and parameterization of the management goals and constraints. It contributes for capturing existing technical knowledge and generates new decision support basis information through optimized scenarios economical and ecological assessments and trade-offs analysis.
 
* ''Design:'' SADPOF simulates and assesses alternative FOP scenarios related within the goals and constraints selected by users.
 
* ''Choice:'' SADPOF provide optimized solution for each FOP scenario, driving the decision-maker to choose among the best solutions.
 
* ''Monitor:'' SADPOF is restricted to planning purposes. However its integration with operations follow-up system is foreseen, with special interest for adaptive real-time planning features.
 
 
=== Related systems  ===
 
SADPOF yearly harvesting stands sub-set results from with other strategic forest planning systems, such as [[SAGfLOR]]. The scenario characterization information can be resident in other related systems, like the forestland patrimony management system. Currently, SADPOF data canalization relays on pre-defined import formats, although integration interfaces can be developed. Similarly, the pre-defined outputs can feed other systems downstream of the planning process, such as forest services adjudication and operations follow-up systems.
 
 
== Data and data models ==
 
[[Image:printscreen_ParamModelo.jpg|thumb|400px|SADPOF model parameter GUI]]
 
 
=== Typical spatial and temporal extent of application  ===
 
SADPOF it’s a tactical/operational planning systems, encompassing 12 to 36 1-month temporal horizon. It typically deals with forest regional scale problems, although the wood destination network can be national or international.
 
 
=== Forest data input  ===
 
SADPOF required forest level input data.
 
* Forest harvesting stand: geographical location, area, forest occupation, harvesting volume estimates at the initial planning period, wood piles geographical location, road accessibility months, contractual obligations, slope level, site index
 
* Product assortment: type of product, product characteristics
 
* Transformation center: geographical location, accepted products
 
* Terminal: geographical location, accepted products
 
* Distribution network: geographical representation, shortest path transportation distances by road and railway between each origin and destination
 
 
=== Type of information input from user (via GUI) ===
 
Describe what is the information that the user directly inputs in the system if any): expert knowledge, opinion, goals and production objectives, preferences, stand/site information....
 
The user can change pre-defined parameter values in specific GUI:
 
* Management model parameters:
 
**Eucaliptus silvicultural system: maximum rotation, minimum harvesting age, installation density
 
**Annual average growth in each site index
 
**Economical information: harvesting unitary costs, installation unitary costs (with or without resprout removal) wood product prices per destination, transportation unitary costs, storing costs,
 
**Minimum qualified monthly demands on the destinations
 
**Terminals maximum storing capacity and maximum storing time
 
**Spatial constraints: minimum operational area, maximum operational area, minimum distance between adjacent stands, exclusion period
 
**Minimum monthly level of stripped and un-stripped wood
 
**Time horizon, interest rate
 
* parameters: Maximum number of iterations, Cooling parameters
 
 
== Models ==
 
=== Forest models ===
 
*Eucaliptus wood logs volume and weight growth and yield models
 
*Eucaliptus biomass prediction models
 
*Eucaliptus wood logs drying models
 
 
== Decision Support ==
 
=== Decision-making processes and models ===
 
*Operations research modeling
 
**Simulated annealing and HAFS heuristics<ref> 5. Marques AF, Borges JG, Sousa P, Gonçalves L, Diaz E, Moura P, Ferrinho M. 2011. Integrating harvest scheduling and timber assortment and assignment planning processes. An application to forest tactical planning by a pulpwood company in Portugal. Forest Science (prep). </ref>
 
**Simulated annealing and transportation algorithm at LP Solve [[http://lpsolve.sourceforge.net/5.5/]] <ref>http://lpsolve.sourceforge.net/5.5/ </ref>
 
**Model exportation in CPLEX [[http://ftp.ilog.fr/products/cplex/product/mip.cfm]] <ref>http://ftp.ilog.fr/products/cplex/product/mip.cfm </ref> template for optimal solution
 
 
=== General system functioning ===
 
The user starts by creating a new FOP scenario or consulting the scenarios processing status in the Scenarios queue. The FOP scenario includes selecting one model and solution method, their parameters configuration, all the required business data and afterwards, the optimization results. Thus, the users operations in the SADPOF are:
 
 
*''New FOP scenario creation:'' selection of the model and solution method
 
*''Scenario parameterization:'' the model and solution methods have default values, with can be changed by the user.
 
*''Scenario simulation:'' automatic system operation for decision variable generation and business data canalization. The simulated scenario can be optimized within SAPDOF optimization module or exported to CPLEX.
 
*''Scenario optimization:'' automatic system operation for solution method execution. Ends with the generation on the Operational Plan and the other SADPOF outputs.
 
*''Scenario cloning:'' corresponds to the exact replication of a selected scenario (model, solution method, business data, parameters) on the created or simulated status. This feature enables rapid new scenario creation for further parameterization, aiming scenarios comparison.
 
*''Scenario analysis:'' the scenario optimization results can support profitability assessments and trade-off analysis.
 
*''Scenario queue consultation:'' presents the status of each FOP scenario and their direct link. Several scenarios can be created almost simultaneously. Their processing sequence is automatically managed by the Scenario queue.
 
*''Operational plan consultation''
 
 
== Output ==
 
[[Image:printscreen_PlanoCortes.jpg|thumb|400px|SADPOF Operational Plan: Harvesting and wood logs/biomass distribution plans]]
 
[[Image:printscreen_SIG.jpg|thumb|400px|SADPOF SIG module: Distribution network for 4m wood logs in a specific period]]
 
=== Types of outputs ===
 
The results of the selected management scenario can be visualized into a GIS integrated module or presented in several pre-defined reports, like the '''Operational Plan'''. This excel report presents monthly harvest schedules and monthly qualified wood flows between the origins and destinations, in order to maximize the forest operations net present value (NPV) and to fulfill the management objectives and constraints. It further expresses the scenario optimization results summary which can be used to perform scenario '''profitability analysis''' (e.g., individual NPV contributions of harvest transportation from stands and transportation from terminals into the final NPV result, limiting and non-limiting constraints, obtained vs. target deviations for the limiting constraints, weights and penalties given to each unitary deviation). Additionally, '''trade off analysis''' can be performed, through generating identical scenarios, changing some model parameters and conducting their optimized results comparison (e.g. impact of terminal capacities increment, existence/value of transformation centers self-supply levels, existence/level of terminals minimum level of supply, increasing the penalty of the maximum area limitation constraint, existence/value of the terminals maximum storing time, wood product prices variation in some destinations, operations costs variations, inaccessibility of the forest roads for some stands during winter).
 
 
=== Spatial analysis capabilities  ===
 
* integrated capabilities in the SADPOF GIS module
 
* facilitates links to other GIS systems
 
 
== System ==
 
=== System requirements  ===
 
* Client requirements:
 
**Browser with web connectivity
 
**Minimum Windows XP (GIS module)
 
* Server requirements:
 
**Windows Server 2003
 
**SQL Server 2005
 
**.Net 3.5
 
**1 GB memory
 
** minimum Duo Core Processor
 
 
=== Architecture and major DSS components ===
 
[[Image:diagrama_arq.jpg|thumb|400px|SADPOF modular components]]
 
The forest practitioners were involved during the entire project, particularly at SADPOF architecture and specification, using the Enterprise Architecture approach <ref>Marques AF, Borges JG, Sousa P and Pinho A, 2010. An enterprise architecture approach to forest management support systems design. An application to pulpwood supply management in Portugal. European Journal of Forest Research130 (6): 935-948</ref> <ref>Marques AF, Borges JG, Sousa P, Fonseca M, Garcia R, Batista G. 2010. Applying enterprise architecture to the design of the integrated forest products supply chain management system. In: Varajão, Cunha M. (Eds.) Proceedings of the CENTERIS2010 Conference, Part II, CCIS 110, Springer-Verlag Berlin Heidelberg 2010, pp. 32-40.</ref>
 
 
The SADPOF three layer modular architecture encompasses the common business information and scenario data repositories, the GUI interfaces for the several FOP application modules and their specific simulator and optimizer component.
 
Visual Studio 2008 (C#) is the SADPOF developing environment, except for the GIS module implemented in Open Source MapWinGis [[http://www.mapwindow.org]] <ref> http://www.mapwindow.org </ref>
 
 
=== Usage ===
 
Currently it has research use.
 
 
=== Installation ===
 
* It requires prior user training on the SADPOF concepts.
 
* Demo: trial and demo versions can be given by request [[alexmarques@isa.utl.pt]].
 
 
==References==
 
===Cited references===
 
<references/>
 

Latest revision as of 16:05, 3 April 2013

Wiki quality control

Has flag N/A

Name, responsible organisation and contact person

Has full name
Has acronym SADPOF
Has wiki contact person Alexandra Marques
Has wiki contact e-mail asfmarques78@gmail.com

Software identification

Has software SADPOF.Software identification

Description

Has description Web based application for optimized forest operational planning (FOP). Currently solves harvest scheduling integrated with eucalyptus (Eucalyptus globulus, Labill) wood logs and biomass assortment and assignment, under the scope of an integrated pulp and paper company.
Has modelling scope Forest indicators
Has temporal scale Medium term (tactical), Short term (operational)
Has spatial context Spatial with no neighbourhood interrelations
Has spatial scale Forest level, Regional/national level
Has objectives dimension Multiple objectives
Has related DSS
Has goods and services dimension Market non-wood products, Market wood products
Has decision making dimension Single decision maker
Has forest management goal forest fuel harvesting
Supports tree species
Supports silvicultural regime

Concrete application

Has typical use case harvest scheduling, wood supply plan
Has user profile Non-industrial private owners
Has country Portugal
Has references about examples of application
Has number of users 0
Has number of real-life applications 0
Has utilisation in education presentation/demo
Has research project reference
Has tool dissemination Videos, scientific articles, communications on research and tecnhical events

Decision support techniques used in the DSS

Has decision support techniques SADPOF.Decision support techniques used in the DSS

Support of Knowledge Management

Has knowledge management processes SADPOF.Support of Knowledge Management

Support of social participation

Has support for social participation SADPOF.Support of social participation

DSS development

Has DSS development SADPOF.DSS development

Documentation

Has website http://www.link.pt/upl/%7B0757b300-68df-4497-b85a-b4bb3926396a%7D.pdf
Has online demo
Has manual
Has technical documentation
Has reference Marques AF, Borges JG, Sousa P, Gonçalves L, Diaz E, Moura P, Ferrinho M. 2011. Integrating harvest scheduling and timber assortment and assignment planning processes. An application to forest tactical planning by a pulpwood company in Portugal. Forest Science (prep); Marques AF, Borges JG, Sousa P, Fonseca M, Garcia R, Batista G. 2010. Applying enterprise architecture to the design of the integrated forest products supply chain management system. In: Varajão, Cunha M. (Eds.) Proceedings of the CENTERIS2010 Conference, Part II, CCIS 110, Springer-Verlag Berlin Heidelberg 2010, pp. 32-40.